脊髓损伤再生修复中的问题与挑战(10)

来源:金属功能材料 【在线投稿】 栏目:期刊导读 时间:2021-07-22
作者:网站采编
关键词:
摘要:[37] CHEN B, LI Y, YU B, et al. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell. 2018;174(3):521-535. [38] LI WY, WANG Y, ZHAI FG, et al. AAV-KLF7 Promotes De

[37] CHEN B, LI Y, YU B, et al. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell. 2018;174(3):521-535.

[38] LI WY, WANG Y, ZHAI FG, et al. AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury. Neural Plast. 2017;2017:.

[39] LANG C, BRADLEY PM, JACOBI A, et al. STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Rep. 2013;14(10):931-937.

[40] BRADLEY PM, DENECKE CK, ALJOVIC A, et al. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity. J Exp Med.2019;216(11):2503-2514.

[41] HUTSON TH, KATHE C, PALMISANO I, et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med. 2019;11(487):eaaw2064.

[42] WARREN PM, STEIGER SC, DICK TE, et al. Rapid and robust restoration of breathing long after spinal cord injury. Nat Commun. 2018;9(1):4843.

[43] HU HZ, GRANGER N, PAI SB, et al. Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain. 2018;141(4):1017-1027.

[44] ROSENZWEIG ES, SALEGIO EA, LIANG JJ, et al. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat Neurosci. 2019;22(8):1269-1275.

[45] JAMES ND, SHEA J, MUIR EM, et al. Chondroitinase gene therapy improves upper limb function following cervical contusion injury. Exp Neurol. 2015;271:131-135.

[46] BURNSIDE ER, DE WINTER F, DIDANGELOS A, et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain. 2018;141(8):2362-2381.

[47] LANG BT, CREGG JM, DEPAUL MA, et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature. 2015;518(7539):404-408.

[48] Z?RNER B, SCHWAB ME. Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci. 2010;1198 Suppl 1:E22-34.

[49] ZHAO RR, ANDREWS MR, WANG D, et al. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci. 2013;38(6):2946-2961.

[50] KUCHER K, JOHNS D, MAIER D, et al. First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Neural Repair. 2018;32(6-7):578-589.

[51] FINK KL, STRITTMATTER SM, CAFFERTY WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice. J Neurosci. 2015;35(46):-.

[52] ZHAO X, PENG Z, LONG L, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8(1):5447.

[53] WANG X, YIGITKANLI K, KIM CY, et al. Human NgR-Fc decoy protein via lumbar intrathecal bolus administration enhances recovery from rat spinal cord contusion. J Neurotrauma. 2014;31(24):1955-1966.

[54] ITO S, NAGOSHI N, TSUJI O, et al. LOTUS Inhibits Neuronal Apoptosis and Promotes Tract Regeneration in Contusive Spinal Cord Injury Model 2018;5(5):e0303-0318.

[55] LI G, CHE MT, ZENG X, et al. Neurotrophin-3 released from implant of tissueengineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A. 2018;106(8):2158-2170.

[56] HAN Q, ORDAZ JD, LIU NK, et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat ;10(1):5815.

[57] CROWLEY ST, FUKUSHIMA Y, UCHIDA S, et al. Enhancement of Motor Function Recovery after Spinal Cord Injury in Mice by Delivery of Brain-Derived Neurotrophic Factor mRNA. Mol Ther Nucleic Acids. 2019;17:465-476.

[58] CHARSAR BA, BRINTON MA, LOCKE K, et al. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord J. 2019;33(12):-.

[59] XU D, WU D, QIN M, et al. Efficient Delivery of Nerve Growth Factors to the Central Nervous System for Neural Regeneration. Adv Mater. 2019;31(33):e.

[60] LIU Y, WANG X, LI W, et al. A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron. 2017;95(4):817-833.

[61] ASSINCK P, DUNCAN GJ, HILTON BJ, et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):637-647.

[62] COURTINE G, SOFRONIEW MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019;25(6):898-908.

[63] LADRAN I, TRAN N, TOPOL A, et al. Neural stem and progenitor cells in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5(6):701-715.

[64] CURTIS E, MARTIN JR, GABEL B, et al. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell. 2018;22(6):941-950.

[65] LU P, WOODRUFF G, WANG Y, et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014;83(4):789-796.

文章来源:《金属功能材料》 网址: http://www.jsgncl.cn/qikandaodu/2021/0722/659.html



上一篇:修复和手术治疗复发性肩关节前向不稳的分析
下一篇:传统音乐文化传承进程中音乐教育的功能价值探

金属功能材料投稿 | 金属功能材料编辑部| 金属功能材料版面费 | 金属功能材料论文发表 | 金属功能材料最新目录
Copyright © 2019 《金属功能材料》杂志社 版权所有
投稿电话: 投稿邮箱: