脊髓损伤再生修复中的问题与挑战(12)

来源:金属功能材料 【在线投稿】 栏目:期刊导读 时间:2021-07-22
作者:网站采编
关键词:
摘要:[92] HOCHBERG LR, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372-375. [93] DONATI AR, SHOKUR S, MORYA E,

[92] HOCHBERG LR, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372-375.

[93] DONATI AR, SHOKUR S, MORYA E, et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci Rep. 2016;6:.

[94] AJIBOYE AB, WILLETT FR, YOUNG DR, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389():1821-1830.

[95] WENGER N, MORAUD EM, GANDAR J, et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med. 2016;22(2):138-145.

[96] CAPOGROSSO M, MILEKOVIC T, BORTON D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284-288.

[97] BONIZZATO M, PIDPRUZHNYKOVA G, DIGIOVANNA J, et al. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun. 2018;9(1):3015.

[98] ANDERSON MA, O'SHEA TM, BURDA JE, et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature. 2018;561(7723):396-400.

[99] YANG Z, ZHANG A, DUAN H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2015;112(43):-.

[100] RAO JS, ZHAO C, ZHANG A, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A.2018;115(24):E5595-E5604.

[101] DEPAUL MA, LIN CY, SILVER J, et al. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep.2017;7(1):9018.

[102] WANG Q, ZHANG H, XU H, et al. Novel multi-drug delivery hydrogel using scarhoming liposomes improves spinal cord injury repair. Theranostics. 2018;8(16):4429-4446.

[103] NAZEMI Z, NOURBAKHSH MS, KIANI S, et al. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J Control Release. 2020;321:145-158.

[104] WANG XJ, PENG CH, ZHANG S, et al. Polysialic-Acid-Based Micelles Promote Neural Regeneration in Spinal Cord Injury Therapy. Nano Lett. 2019;19(2):829-838.

[105] TIAN T, YU Z, ZHANG N, et al. Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection. Biomater Sci.2017;5(12):2480-2492.

[106] LU P, WANG Y, GRAHAM L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150(6):1264-1273.

[107] KADOYA K, LU P, NGUYEN K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22(5):479-487.

[108] KOFFLER J, ZHU W, QU X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263-269.

[109] ROSENZWEIG ES, BROCK JH, LU P, et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018;24(4):484-490.

[110] TAKEOKA A, JINDRICH DL, MU?OZ-QUILES C, et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. Version 2. J Neurosci. 2011;31(11):4298-4310.

[111] CHEN K, MARSH BC, COWAN M, et al. Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Exp Neurol. 2017;292:135-144.

[112] GRIFFIN JM, FACKELMEIER B, CLEMETT CA, et al. Astrocyte-selective AAVADAMTS4 gene therapy combined with hindlimb rehabilitation promotes functional recovery after spinal cord injury. Exp Neurol. 2020;327:.

[113] FEHLINGS MG, KIM KD, AARABI B, et al. Rho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial. J Neurotrauma. 2018;35(9):1049-1056.

[114] MINEV IR, MUSIENKO P, HIRSCH A, et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347(6218):159-163.

[115] SCHAFFRAN B, BRADKE F. Reproducibility - The key towards clinical implementation of spinal cord injury treatments? Exp Neurol. 2019;313:135-136.

[116] FRIEDLI L, ROSENZWEIG ES, BARRAUD Q, et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med. 2015;7(302):302ra134.

文章来源:《金属功能材料》 网址: http://www.jsgncl.cn/qikandaodu/2021/0722/659.html



上一篇:修复和手术治疗复发性肩关节前向不稳的分析
下一篇:传统音乐文化传承进程中音乐教育的功能价值探

金属功能材料投稿 | 金属功能材料编辑部| 金属功能材料版面费 | 金属功能材料论文发表 | 金属功能材料最新目录
Copyright © 2019 《金属功能材料》杂志社 版权所有
投稿电话: 投稿邮箱: