脊髓损伤再生修复中的问题与挑战(9)

来源:金属功能材料 【在线投稿】 栏目:期刊导读 时间:2021-07-22
作者:网站采编
关键词:
摘要:[9] BRADBURY EJ, BURNSIDE ER. Moving beyond the glial scar for spinal cord Commun. 2019;10(1):3879. [10] LINDSAY SL, MCCANNEY GA, WILLISON AG, et al. Multi-target approaches to CNS repair: olfactory m

[9] BRADBURY EJ, BURNSIDE ER. Moving beyond the glial scar for spinal cord Commun. 2019;10(1):3879.

[10] LINDSAY SL, MCCANNEY GA, WILLISON AG, et al. Multi-target approaches to CNS repair: olfactory mucosa-derived cells and heparan sulfates. Nat Rev ;16(4):229-240.

[11] BARNABé-HEIDER F, G?RITZ C, SABELSTR?M H, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470-482.

[12] G?RITZ C, DIAS DO, TOMILIN N, et al. A pericyte origin of spinal cord scar 2011;333(6039):238-242.

[13] LIU Z, YANG Y, HE L, et al. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology. 2019;93(9):e841-e850.

[14] TENG YD, CHOI H, ONARIO RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A. 2004;101(9):3071-3076.

[15] CASHA S, ZYGUN D, MCGOWAN MD, et al. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135(Pt 4):1224-1236.

[16] LI X, LIU R, YU Z, et al. Microglial Hv1 exacerbates secondary damage after spinal cord injury in mice. Biochem Biophys Res Commun. 2020 Feb 19. doi: 10.1016/ Online ahead of print.

[17] QIAN Z, CHANG J, JIANG F, et al. Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain Behav Immun. 2020;87:531-542.

[18] YIP PK, BOWES AL, HALL JCE, et al. Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Hum Mol Genet. 2019;28(14):2427-2448.

[19] LIN X, ZHU J, NI H, et al. Treatment With 2-BFI Attenuated Spinal Cord Injury by Inhibiting Oxidative Stress and Neuronal Apoptosis via the Nrf2 Signaling Cell Neurosci. 2019;13:567.

[20] WANG H, ZHENG Z, HAN W, et al. Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Med Cell Longev. 2020;2020:.

[21] WANG J, LI H, REN Y, et al. Local Delivery of β-Elemene Improves Locomotor Functional Recovery by Alleviating Endoplasmic Reticulum Stress and Reducing Neuronal Apoptosis in Rats with Spinal Cord Injury. Cell Physiol Biochem. 2018;49(2):595-609.

[22] WANG C, ZHANG L, NDONG JC, et al. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation. 2019;16(1):238.

[23] HUTSON TH, DI GIOVANNI S. The translational landscape in spinal cord injury:focus on neuroplasticity and regeneration. Nat Rev Neurol. 2019;15(12):732-745.

[24] SANDNER B, PUTTAGUNTA R, MOTSCH M, et al. Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Exp Neurol. 2018;306:250-259.

[25] HELLAL F, HURTADO A, RUSCHEL J, et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science. 2011;331(6019):928-931.

[26] MAO L, GAO W, CHEN S, et al. Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death Dis. 2017;8(11):e3162.

[27] LIZ MA, MAR FM, SANTOS TE, et al. Neuronal deletion of GSK3β increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biol. 2014;12:47.

[28] CURCIO M, BRADKE F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu Rev Cell Dev Biol. 2018;34:495-521.

[29] FOURNIER AE, TAKIZAWA BT, STRITTMATTER SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 2003;23(4):1416-1423.

[30] WANG J, LI H, YAO Y, et al. β-Elemene Enhances GAP-43 Expression and Neurite Outgrowth by Inhibiting RhoA Kinase Activation in Rats with Spinal Cord 2018;383:12-21.

[31] GWAK SJ, MACKS C, JEONG DU, et al. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials. 2017;121:155-166.

[32] DEVAUX S, CIZKOVA D, MALLAH K, et al. RhoA Inhibitor Treatment At Acute Phase of Spinal Cord Injury May Induce Neurite Outgrowth and Synaptogenesis. Mol Cell Proteomics. 2017;16(8):1394-1415.

[33] TEDESCHI A, DUPRAZ S, CURCIO M, et al. ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Neuron. 2019;103(6):1073-1085.

[34] DU K, ZHENG S, ZHANG Q, et al. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury. J Neurosci. 2015;35(26):9754-9763.

[35] TEDESCHI A, DUPRAZ S, LASKOWSKI CJ, et al. The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS. Neuron. 2016;92(2):419-434.

[36] SUN W, LARSON MJ, KIYOSHI CM, et al. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J Clin Invest. 2020;130(1):345-358.

文章来源:《金属功能材料》 网址: http://www.jsgncl.cn/qikandaodu/2021/0722/659.html



上一篇:修复和手术治疗复发性肩关节前向不稳的分析
下一篇:传统音乐文化传承进程中音乐教育的功能价值探

金属功能材料投稿 | 金属功能材料编辑部| 金属功能材料版面费 | 金属功能材料论文发表 | 金属功能材料最新目录
Copyright © 2019 《金属功能材料》杂志社 版权所有
投稿电话: 投稿邮箱: