脊髓损伤再生修复中的问题与挑战(11)

来源:金属功能材料 【在线投稿】 栏目:期刊导读 时间:2021-07-22
作者:网站采编
关键词:
摘要:[66] KOJIMA K, MIYOSHI H, NAGOSHI N, et al. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Inj

[66] KOJIMA K, MIYOSHI H, NAGOSHI N, et al. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Transl Med. 2019;8(3):260-270.

[67] ROPPER AE, THAKOR DK, HAN I, et al. Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation. Proc Natl Acad Sci U S A. 2017;114(5):E820-E829.

[68] WU GH, SHI HJ, CHE MT, et al. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials. 2018;181:15-34.

[69] VAQUERO J, ZURITA M, RICO MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20(6):806-819.

[70] KHANKAN RR, GRIFFIS KG, HAGGERTY-SKEANS JR, et al. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Neurosci. 2016;36(23):6269-6286.

[71] GILMOUR AD, RESHAMWALA R, WRIGHT AA, et al. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J ;37(5):817-829.

[72] GRANGER N, BLAMIRES H, FRANKLIN RJ, et al. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain. 2012;135(Pt 11):3227-3237.

[73] KANNO H, PEARSE DD, OZAWA H, et al. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci. 2015;26(2):121-128.

[74] ANDERSON KD, GUEST JD, DIETRICH WD, et al. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J Neurotrauma. 2017;34(21):2950-2963.

[75] TORRES-ESPíN A, BEAUDRY E, FENRICH K, et al. Rehabilitative Training in Animal Models of Spinal Cord Injury. J Neurotrauma. 2018;35(16):1970-1985.

[76] JAMES ND, MCMAHON SB, FIELD-FOTE EC, et al. Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol. 2018;17(10):905-917.

[77] ANGELI CA, EDGERTON VR, GERASIMENKO YP, et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394-1409.

[78] ANGELI CA, BOAKYE M, MORTON RA, et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med. 2018;379(13):1244-1250.

[79] GILL ML, GRAHN PJ, CALVERT JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med.2018;24(11):1677-1682.

[80] FORMENTO E, MINASSIAN K, WAGNER F, et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018;21(12):1728-1741.

[81] WAGNER FB, MIGNARDOT JB, LE GOFF-MIGNARDOT CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. ;563(7729):65-71.

[82] HARKEMA SJ, WANG S, ANGELI CA, et al. Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury. Front Hum Neurosci. 2018;12:83.

[83] WILLYARD C. How a revolutionary technique got people with spinal-cord injuries back on their feet. Nature. 2019;572(7767):20-25.

[84] SQUAIR JW, BJERKEFORS A, INGLIS JT, et al. Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury. J Rehabil Med. 2016;48(7):589-596.

[85] MAHLKNECHT P, LIMOUSIN P, FOLTYNIE T. Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments. J Neurol. 2015;262(11):2583-2595.

[86] ZAREEN N, DODSON S, ARMADA K, et al. Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol. 2018;307:133-144.

[87] YANG Q, RAMAMURTHY A, LALL S, et al. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats. Exp Neurol. 2019;320:.

[88] CORTES M, MEDEIROS AH, GANDHI A, et al. Improved grasp function with transcranial direct current stimulation in chronic spinal cord 2017;41(1):51-59.

[89] KRISHNAN VS, SHIN SS, BELEGU V, et al. Multimodal Evaluation of TMS - Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury. Front Neurosci. 2019;13:387.

[90] LESZCZY?SKA K, WINCEK A, FORTUNA W, et al. Treatment of patients with cervical and upper thoracic incomplete spinal cord injury using repetitive transcranial magnetic stimulation. Int J Artif Organs. 2020;43(5):323-331.

[91] RODIONOV A, SAVOLAINEN S, KIRVESKARI E, et al. Restoration of hand function with long-term paired associative stimulation after chronic incomplete tetraplegia: a case study. Spinal Cord Ser Cases. 2019;5:81.

文章来源:《金属功能材料》 网址: http://www.jsgncl.cn/qikandaodu/2021/0722/659.html



上一篇:修复和手术治疗复发性肩关节前向不稳的分析
下一篇:传统音乐文化传承进程中音乐教育的功能价值探

金属功能材料投稿 | 金属功能材料编辑部| 金属功能材料版面费 | 金属功能材料论文发表 | 金属功能材料最新目录
Copyright © 2019 《金属功能材料》杂志社 版权所有
投稿电话: 投稿邮箱: